
Computers 

Some of you will remember Commander Data of the Star Ship Enterprise. He 
comes from the Second Generation series of the Star Trek films than ran on 
television for many years. He looks like us, but he is different in several important 
ways. First, he is man-made and in fact non-biological. If you were to open up his 
service panel, you would find mostly computer hardware. He is what Rene 
Descartes would call an automaton. Second, his mental powers are vastly greater 
than any modern computer you can imagine. Third, he has no emotions. Despite 
this, he is a competent member of the star ship. He always acts ethically; he 
claims that he was programed to do so. He is a consummate violinist, but he 
claims that he has simply memorized the playing of the great violinists of the past. 
He had a deep friendship with a woman despite the fact that he claims to have no 
idea what it means to fall in love. Data raises some fundamental questions for us. 
There is an ethical issue; should he be treated as a human being or as property? 
Then, is he conscious? So far as I know, no one ever asked him that question. If 
you were to ask him, I suspect that he would reply that he simply didn’t 
understand the question. For our purposes, the big question is this: is Data 
possible even in principle? I suspect the answer is no, but the matter is far from 
settled. 

Let me start the discussion by telling you two stories. 

My first story concerns Charles Babbage. He was one of the intellectual giants of 
his day, a mathematician, philosopher, mechanical engineer, and an inventor. He 
was Lucasion Professor of Mathematics at Cambridge University, a position that 
was once held by Isaac Newton and is currently occupied by Stephen Hawking. He 
had one additional advantage over both these men: he was outrageously rich! 
Today we think of him as the father of the modern computer. 

In 1822 he proposed to the Royal Astronomical Society a machine to calculate 
mathematical and astronomical tables. He called it the difference engine. It would 
have had 25,000 parts, weigh 15 tons, stand 8 feet tall, and be driven by steam. 
The British government gave him £1700 to start. By the time the government had 
lost faith in the project Babbage had received and spent £17,470 and the machine 



was nowhere near finished. About the same time, John Bull built the first steam 
locomotive for £784. Babbage had spent the equivalent of 22 locomotives! About 
the same time, Babbage had conceived of a better plan that would have been 
simpler to build with fewer parts. He called it Difference Engine #2. It was never 
built in his lifetime, but in 1991 the Science Museum of London built a Difference 
Engine from Babbage’s original plans. It works flawlessly. It can evaluate 7th-order 
polynomials, store 8 numbers and calculate to 31 digit accuracy. 

In 1837, Babbage proposed a mechanical general-purpose computer as the 
successor to his difference engine. It was called the Analytical Engine. It 
incorporated an arithmetic logic unit, control flow in the form of conditional 
branching and loops, and integrated memory, making it the first design for a 
general-purpose computer. In modern terminology, it was Touring-complete. This 
means roughly that in principle it could calculate anything that any other 
computer could calculate. It was not until the 1940’s that the first general-
purpose computers were actually built, more than a century after Babbage had 
proposed the pioneering Analytical Engine. 

Let’s switch to modern times. In 1997 IBM built a computer called Deep Blue 
exclusively to play chess. It could evaluate 200 million chess positions per second 
and used as much electrical power as a small village. It played a match with Gary 
Casperov the reigning world champion and lost by a score of 4-2. The computer 
was then massively upgraded and won the next match by a score of 3 ½ - 2 ½. 
Casperov accused IBM of cheating, i.e. using human players. IBM denied the 
charge. Casperov demanded to see the computer program. IBM refused and 
promptly dismantled the computer. So did IBM cheat? Probably not, but that is 
not the point. The point is that a human player who could evaluate perhaps two 
positions a second could beat a computer that could evaluate 200 million. How is 
that possible? The easy answer is that they were the right two, but how did he 
know? 

Let’s start by thinking of the human brain as a kind of computer. In a previous talk 
I told you a little about neurons and how they work. I described them in terms of 
electrical engineering and chemical engineering. Now since we are talking about 



computers, let’s look at neurons from the point of view of mathematics. The 
header to this talk is the sketch of the mathematics of a neuron. According to the 
electrical engineer, electrical signals are propagated through the dendrites to the 
body of the neuron. From the point of view of mathematics, they are just 
“quantities.” In the diagram they are labeled x1, x2,⋯,xm. Some of these quantities 
are larger than others, so we will indicate this with “weights,” here labeled w1, w2, 
⋯,wm. The reason some are larger than others is a result of the chemical 
calculations carried on by the synapses; in the diagram they are labeled synaptic 
weights. It is speculated that memories are stored in this way. When you 
remember something you are just summoning up a constellation of synaptic 
weights! Then these quantities are just added; that’s the significance of the big 
sigma in the diagram. Depending how large the sum is the neuron either does or 
does not send a signal onto the next neuron. This final decision is made by the 
activation function, here represented with a phi. That’s all there is to it – just high 
school algebra, and high school algebra is something that computers are very 
good at. Perhaps we can make simple “brains” by running networks of these 
mathematical neurons on computers. 

There are philosophers who would like to take this further. They claim that the 
brain is nothing but a very complicated computer. This point of view is called 
connectionism. If this were true, if this were the whole story, there would not be 
much for the philosophers to do. We are conscious in the same way that 
computers are conscious. We have free will to the same extent that computers 
have it. We understand computers, after all, we build them, so by extension we 
understand our minds. You have all heard of the branch of computer science 
called artificial intelligence or AI for short. Is there really any important difference 
between artificial intelligence and our own? To explore this question, I would first 
like to give you some history of computers and artificial intelligence, then tell you 
about special kinds of computes called neural nets, and finally get back to the big 
philosophical questions. 

Calculating machines, for example Babbage’s analytic engine, are not a new idea, 
and when electronics with switches and vacuum tubes were first developed it 
became possible to make circuits that could calculate things. They had something 



in common with the mechanical calculators, however. If you wanted your 
calculating machine to calculate something different you would have to rebuild it. 
If you wanted your calculating circuit to calculate something different you would 
have to rewire it. The modern computer was born in 1945 with the idea that a 
calculating circuit could be made in some sense to rewire itself. The man who first 
envisioned this, the man who is usually given credit for inventing the modern 
computer was John von Neumann. 

John von Neumann was born in Budapest in 1903 and moved to Princeton with 
his family in the mid 1930’s. By the mid 1940’s he had invented game theory and 
the theory of automata (which deals with the possibility that machines might be 
able to reproduce themselves). In the field of hydrodynamics, he developed a 
mathematical formalism for modeling shock waves.  These calculations were used 
in the Manhattan Project to develop detonators for nuclear weapons. He was also 
the author of the pivotal book on the mathematical foundations of quantum 
mechanics.  

A von Neumann computer consists of two parts, a memory unit and a central 
processor or CPU. The memory stores two kinds of information: data in the form 
of binary numbers and instructions that tell the CPU what to do with these 
numbers. The computer operates in well-defined cycles: first fetch some specific 
data into the CPU together with instructions that tell the processor what to do 
with these numbers. The results of the calculation are then stored back in 
memory and the computer begins a new cycle. This is called the von Neumann 
architecture, and such a computer is said to be a serial machine; serial in the 
sense that it only does one thing at a time. This has been a successful strategy 
because modern computers are so phenomenally fast. There is something about 
it that seems wildly impractical, however. Suppose you were moving all your 
household possessions from New York to San Francisco. The von Neumann 
architecture corresponds to moving them one item at a time; move a dress to San 
Francisco, then go back to New York to get a coat, etc. The speed at which signals 
travel in a computer is limited by the speed of light, 186,000 miles a second. The 
speed at which signals travel in the brain is more like 100 yard, the length of a 
football field, in one second. Clearly the brain is not a serial machine, but 



remember there are one million ganglion cells in the optic nerve. In some sense 
the brain is doing one million things at once. This difference has motivated the 
development of neural net computers, which I will discuss eventually. 

Break here - - - - - - 

The second giant in the field of computing and artificial intelligence was the 
Englishman Alan M. Touring. In the field of computer science, he has somewhat 
the same status that Einstein has in physics. He is the towering giant of the 20th  
century.  

During World War II Touring was instrumental in cracking the extraordinarily 
complex code that the Nazi military used for most of its communications. The 
simplest code you can imagine is simply a set of rules for replacing one letter for 
another. For example, every time the letter T appears replace it with Q, replace U 
with B, etc. If your correspondent has a copy of the rules, he or she can easily 
translate the coded message. Unfortunately, your enemy can easily reconstruct 
the rules based on the frequency with which letters appear in English text. But 
suppose the rules change with each successive letter. It seems that that would 
make the code impossible to break. The Nazis managed to write such a code with 
the help of a mechanical apparatus called the enigma machine. This was an 
electro-mechanical rotor device that would change the code automatically. The 
sender would encode the message with an enigma machine and the recipient 
with another machine would decode it.  With some of the more complicated 
enigmas there were billions of billions of possible combinations.  Even if you could 
review a million combinations a second, it would still take millions of years to 
decode any message, and the Nazis changed the machine settings every day! Part 
of the British success in breaking the code exploited regularities in the German 
communications. For example, they tended to end their messages with “Heil 
Hitler.” There was also a weakness in the machine in that it could never code a 
letter as itself.  

A major part of cracking the Enigma code made use of another machine built by 
Touring called the Bombe, which could sort possibilities with immense speed. 
Thanks to Touring’s work, the Allies were able to decode almost all intercepted 



Nazi messages throughout the war. This had its downside; it forced some 
agonizing decisions. For example, the British knew that the city of Coventry was to 
be bombed, but they decided not to evacuate for fear of revealing the fact that 
the German messages were being decoded. Nonetheless, it could be argued that 
without Touring’s genius, the Allies would have lost the war or at least it would 
have continued much longer with great additional suffering on the part of the 
British people. 

The story does not have a happy ending. Touring was an atheist and a 
homosexual and he was not discreet. Homosexual sodomy was treated as a crime 
in Britain in the 1950’s. In the course of reporting a burglary in 1952, he made the 
mistake of informing the police of his homosexuality. He was arrested, tried, and 
convicted. As part of his sentence he was to be subjected to chemical castration. 
It seemed inevitable that his security clearance would be revoked and he would 
be subjected to public humiliation. In June 1954 he committed suicide by eating 
an apple dipped in cyanide. He was just 42. 

For our purposes, Touring is notable for two other contributions, the Touring 
machine and the Touring test. The Touring machine is a sort of a mathematician’s 
abstract computer. No one would every build a computer like it, but because of 
its extreme simplicity it is possible to prove rigorous mathematical theorems 
about what computers can and cannot do. The machine consists of an infinitely 
long tape marked off in “squares” on which are written symbols like 1 and 0, and 
a read head that can read, erase, and write symbols and move the tape one 
square to the right or left. The read head contains a set of instructions of the 
form: 

If the head is in state 17 and the square contains a 1, change to state 43 
and move the tape one square to the right. 

If the head is in state 78 and the square contains a 0, replace it with a 1 and 
move the tape one square to the left. 

Nowadays we would say that the tape was the “data” and the instructions in the 
read head were the “program.” Touring was able to prove that any calculation that 



could be performed on any computer could be done by this simple machine. He 
also noted that there are calculations that seem quite trivial to humans but which 
cannot be done by any computer.  This last point is worth some careful thought. 
Computer operations are said to be “algorithmic,” that is to say that the computer’s 
calculations are always done according to a list of instructions. When we are 
performing operations in our head that are impossible for any computer we are 
thinking non-algorithmically. It has been claimed (and also denied) that our minds 
are ultimately not computers and that computers will never be able to think like us 
because we are capable of non-algorithmic thought. Touring himself didn’t think 
so; he claimed that mathematical arguments are no help in deciding if a machine 
can think. He proposed instead an experimental test, which he called the imitation 
game and which has come to be known as the Touring test.  

Imagine that you are communicating with either a computer or another human 
being through a computer terminal. You submit questions and the unknown entity 
replies. Your job is to decide whether you are communicating with a person or a 
computer, and of course, the computer doesn’t have to tell the truth. So for 
example, if you ask the computer, “Are you a computer?” it will reply “No.” An 
intelligent computer, claimed Touring, is one that can systematically fool the 
human questioner. The implication is that this is the only meaningful way to define 
intelligence.  

So how well are we doing in building such a computer? There is a contest held every 
year called the Loebner Prize. Contestants submit their computer programs, which 
are questioned by a panel of twelve judges. If you can fool the majority of judges 
for five minutes you win $100,000 and a gold medal. No one ever has. There’s 
actually a website where you can go and interview some of the best programs from 
past competitions.  

http://www.loebner.net/Prizef/loebner-prize.html 

The Touring machine is an example of algorithmic computing, i.e. it operates 
according to a definite set of instructions. The instructions are contained in the read 
heads and are put there by the people who build the computer. Another way to 
look at it is that the Touring machine works by manipulating symbols, in this case 

http://www.loebner.net/Prizef/loebner-prize.html


the symbols 1 and 0. All von Neumann style computers are symbol manipulators. 
The symbols now are represented by 32- or 64-bit words, but they are symbols 
nevertheless. In the early days of AI it was assumed that intelligence could be 
reduced to symbol manipulation, and this approach has come to be called Good 
Old Fashion Artificial Intelligence or GOFAI for short. This approach had some 
notable successes early on. Programs were developed that could prove theorems 
in logic, mathematics, and geometry, and play decent games of Backgammon, 
checkers and chess. In retrospect, these tasks are most easily represented by 
symbols. Other tasks, face recognition for example, proved to be much more 
difficult. Other aspects of intelligence, like pattern recognition, context sensitivity, 
and rough-and-ready categorization proved much more difficult. It became 
increasingly clear how few human abilities actually fit the GOFIA model. Certainly 
the brain in no way resembles a von Neumann computer. The brain does parallel 
processing on a massive scale and it does it with neurons. So why not model a 
computer like the brain? Thus was born the idea of neural nets. Connectionism and 
parallel processing are more or less synonymous terms.  

The header of this podcast is a very schematic diagram of  simple neural net. The 
circles represent neurons and lines connecting them are a combination of an axon 
from the previous neuron, a synapse, and a dendrite leading into the next neuron. 
Associated with each synapse is a weight. This is a small number which might be 
positive or negative. (In this diagram we can simply say that the weight is associated 
with the entire line.) The weights can be adjusted, and in this way the network 
“learns” from experience. From the point of view of mathematics, a neuron is just 
a function called the activation function. It simply adds up the incoming signals, and 
depending on how large the sum is it produces some output that is fed onto the 
next neuron.  

Suppose we want to teach a network to recognize faces. First we digitize some 
photos so that they can be fed into the net. We know the names of these people 
of course, and the network has a list of possible names. We chose a sample of 
photos called the training set, and feed them into the net. The net has never seen 
these people before, and so its responses are just wild guesses. We now change 
the weights so that it makes better guesses. Feed the training set in again, and again 



adjust the weights. We might have to do this many times until the network is 
completely trained. How well does this work?  

Here's an example in some detail. Garrison Cottrell and his group at UC San Diego 
constructed a three-layer neural net that used photos as input. The training set 
consisted of 64 photos of 11 different faces with different expressions plus 13 
photos of non-faces, photos of a watch or a bulletin board, for example. Once 
trained, the machine achieved 100 percent accuracy on the training sample. It 
could tell you which was a face, what the sex of the person was, and who it was. 
The team then showed the computer many picture of the same people but with 
different expressions. It was 98% accurate at identifying the name and gender of 
the new photos. The team then showed the net more pictures of people it had 
never seen. It was still 100% accurate in distinguishing between faces and non-
faces, and 81% accurate in determining the sex of these people it had never seen. 
I think that if you showed me photos of faces of students on campus I would not 
do much better myself. 

There are some things about this I find fascinating. If you were to stop your desktop 
computer in the midst of a calculation and peer into its CPU you could discern 
exactly what it was doing. Look into its program memory and you will learn what it 
is going to do. Look into its hard drive and you will see the data it is working with; 
but with a neural net you never know what it is thinking about. The result of all its 
knowledge and judgement is a set of apparently meaningless numbers. 

This brings me around to the question I started with; is the mind nothing more than 
a large computer? We know now that it is certainly not a von Neumann style 
computer, but might it be just a very large neural net? It is certainly true that we 
can model or instantiate various mental processes or sub-processes with artificial 
neural nets. It is also true that when we think about something, various areas of 
our brains “light up” in fMRI scans. To use a technical term, there are “neural 
correlates” to our thoughts. But is that the whole story? People working in 
computer science will often say glibly, yes of course, that is all there is. Philosophers 
are not so sure. When philosophers argue the issue, it is usually with the help of 
some bizarre thought experiments. 



The most famous of these is called the Chinese room argument first proposed by 
John Searle of UC Berkeley. Let’s assume that you don’t know any Chinese, but you 
are in a room with many instruction books written in English and Chinese. Chinese 
speakers pass questions into you written in their native language. You then consult 
your reference books as to how you are going to answer. They say things like, “if 
you see the following set of meaningless symbols, reply with this set of equally 
meaningless symbols.” You pass your responses on to the Chinese speakers 
outside, and they assume you are also a native speaker, but in fact, you understood 
absolutely nothing you wrote.  Searle’s point is that in the room you are doing 
exactly what a computer does: you are taking input data and processing it 
according to a set of instructions, but without any understanding of what you are 
doing. The input, the output, and the instructions are all meaningless. Searle makes 
the following distinction. Syntax refers to the rules for making grammatical 
sentences. Semantics refers to the meaning of these sentences. Computers are 
masters of syntax; they know all the rules, but they know nothing of semantics. It 
would be trivially wrong to say that our minds are not computers. We can compute 
after all; but our minds are not only computers. We have semantics, they don’t. 

Searle makes a further point that seems to me very important. Suppose you are 
typing a letter using MS Word. You are communicating with the computer by 
means of electrical impulses. The computer responds by putting little black 
patterns on your monitor screen. Searle’s point is that neither the electrical 
impulses nor the letters on the screen by themselves have any meaning. The 
meaning is intrinsic to you, not the computer. Paper money makes a good analogy. 
Think of a hundred-dollar bill. It’s just a piece of paper. In and of itself it is practically 
worthless. We assign it meaning and value. 

There have been numerous attempts to refute this argument. Perhaps the best we 
can do by way of a refutation is to say that Searle’s argument is based on our 
current knowledge of computers and consciousness. Perhaps one day we will see 
all this from a larger perspective. Perhaps. I would not want to discourage further 
research in computers as means for understanding the mind, but there are further 
philosophic considerations that I will take up in the next podcast.  


