
Computers

Some of you will remember Commander Data of the Star Ship Enterprise. He
comes from the Second Generation series of the Star Trek films than ran on
television for many years. He looks like us, but he is different in several important
ways. First, he is man-made and in fact non-biological. If you were to open up his
service panel, you would find mostly computer hardware. He is what Rene
Descartes would call an automaton. Second, his mental powers are vastly greater
than any modern computer you can imagine. Third, he has no emotions. Despite
this, he is a competent member of the star ship. He always acts ethically; he
claims that he was programed to do so. He is a consummate violinist, but he
claims that he has simply memorized the playing of the great violinists of the past.
He had a deep friendship with a woman despite the fact that he claims to have no
idea what it means to fall in love. Data raises some fundamental questions for us.
There is an ethical issue; should he be treated as a human being or as property?
Then, is he conscious? So far as I know, no one ever asked him that question. If
you were to ask him, I suspect that he would reply that he simply didn’t
understand the question. For our purposes, the big question is this: is Data
possible even in principle? I suspect the answer is no, but the matter is far from
settled.

Let me start the discussion by telling you two stories.

My first story concerns Charles Babbage. He was one of the intellectual giants of
his day, a mathematician, philosopher, mechanical engineer, and an inventor. He
was Lucasion Professor of Mathematics at Cambridge University, a position that
was once held by Isaac Newton and is currently occupied by Stephen Hawking. He
had one additional advantage over both these men: he was outrageously rich!
Today we think of him as the father of the modern computer.

In 1822 he proposed to the Royal Astronomical Society a machine to calculate
mathematical and astronomical tables. He called it the difference engine. It would
have had 25,000 parts, weigh 15 tons, stand 8 feet tall, and be driven by steam.
The British government gave him £1700 to start. By the time the government had
lost faith in the project Babbage had received and spent £17,470 and the machine

was nowhere near finished. About the same time, John Bull built the first steam
locomotive for £784. Babbage had spent the equivalent of 22 locomotives! About
the same time, Babbage had conceived of a better plan that would have been
simpler to build with fewer parts. He called it Difference Engine #2. It was never
built in his lifetime, but in 1991 the Science Museum of London built a Difference
Engine from Babbage’s original plans. It works flawlessly. It can evaluate 7th-order
polynomials, store 8 numbers and calculate to 31 digit accuracy.

In 1837, Babbage proposed a mechanical general-purpose computer as the
successor to his difference engine. It was called the Analytical Engine. It
incorporated an arithmetic logic unit, control flow in the form of conditional
branching and loops, and integrated memory, making it the first design for a
general-purpose computer. In modern terminology, it was Touring-complete. This
means roughly that in principle it could calculate anything that any other
computer could calculate. It was not until the 1940’s that the first general-
purpose computers were actually built, more than a century after Babbage had
proposed the pioneering Analytical Engine.

Let’s switch to modern times. In 1997 IBM built a computer called Deep Blue
exclusively to play chess. It could evaluate 200 million chess positions per second
and used as much electrical power as a small village. It played a match with Gary
Casperov the reigning world champion and lost by a score of 4-2. The computer
was then massively upgraded and won the next match by a score of 3 ½ - 2 ½.
Casperov accused IBM of cheating, i.e. using human players. IBM denied the
charge. Casperov demanded to see the computer program. IBM refused and
promptly dismantled the computer. So did IBM cheat? Probably not, but that is
not the point. The point is that a human player who could evaluate perhaps two
positions a second could beat a computer that could evaluate 200 million. How is
that possible? The easy answer is that they were the right two, but how did he
know?

Let’s start by thinking of the human brain as a kind of computer. In a previous talk
I told you a little about neurons and how they work. I described them in terms of
electrical engineering and chemical engineering. Now since we are talking about

computers, let’s look at neurons from the point of view of mathematics. The
header to this talk is the sketch of the mathematics of a neuron. According to the
electrical engineer, electrical signals are propagated through the dendrites to the
body of the neuron. From the point of view of mathematics, they are just
“quantities.” In the diagram they are labeled x1, x2,⋯,xm. Some of these quantities
are larger than others, so we will indicate this with “weights,” here labeled w1, w2,
⋯,wm. The reason some are larger than others is a result of the chemical
calculations carried on by the synapses; in the diagram they are labeled synaptic
weights. It is speculated that memories are stored in this way. When you
remember something you are just summoning up a constellation of synaptic
weights! Then these quantities are just added; that’s the significance of the big
sigma in the diagram. Depending how large the sum is the neuron either does or
does not send a signal onto the next neuron. This final decision is made by the
activation function, here represented with a phi. That’s all there is to it – just high
school algebra, and high school algebra is something that computers are very
good at. Perhaps we can make simple “brains” by running networks of these
mathematical neurons on computers.

There are philosophers who would like to take this further. They claim that the
brain is nothing but a very complicated computer. This point of view is called
connectionism. If this were true, if this were the whole story, there would not be
much for the philosophers to do. We are conscious in the same way that
computers are conscious. We have free will to the same extent that computers
have it. We understand computers, after all, we build them, so by extension we
understand our minds. You have all heard of the branch of computer science
called artificial intelligence or AI for short. Is there really any important difference
between artificial intelligence and our own? To explore this question, I would first
like to give you some history of computers and artificial intelligence, then tell you
about special kinds of computes called neural nets, and finally get back to the big
philosophical questions.

Calculating machines, for example Babbage’s analytic engine, are not a new idea,
and when electronics with switches and vacuum tubes were first developed it
became possible to make circuits that could calculate things. They had something

in common with the mechanical calculators, however. If you wanted your
calculating machine to calculate something different you would have to rebuild it.
If you wanted your calculating circuit to calculate something different you would
have to rewire it. The modern computer was born in 1945 with the idea that a
calculating circuit could be made in some sense to rewire itself. The man who first
envisioned this, the man who is usually given credit for inventing the modern
computer was John von Neumann.

John von Neumann was born in Budapest in 1903 and moved to Princeton with
his family in the mid 1930’s. By the mid 1940’s he had invented game theory and
the theory of automata (which deals with the possibility that machines might be
able to reproduce themselves). In the field of hydrodynamics, he developed a
mathematical formalism for modeling shock waves. These calculations were used
in the Manhattan Project to develop detonators for nuclear weapons. He was also
the author of the pivotal book on the mathematical foundations of quantum
mechanics.

A von Neumann computer consists of two parts, a memory unit and a central
processor or CPU. The memory stores two kinds of information: data in the form
of binary numbers and instructions that tell the CPU what to do with these
numbers. The computer operates in well-defined cycles: first fetch some specific
data into the CPU together with instructions that tell the processor what to do
with these numbers. The results of the calculation are then stored back in
memory and the computer begins a new cycle. This is called the von Neumann
architecture, and such a computer is said to be a serial machine; serial in the
sense that it only does one thing at a time. This has been a successful strategy
because modern computers are so phenomenally fast. There is something about
it that seems wildly impractical, however. Suppose you were moving all your
household possessions from New York to San Francisco. The von Neumann
architecture corresponds to moving them one item at a time; move a dress to San
Francisco, then go back to New York to get a coat, etc. The speed at which signals
travel in a computer is limited by the speed of light, 186,000 miles a second. The
speed at which signals travel in the brain is more like 100 yard, the length of a
football field, in one second. Clearly the brain is not a serial machine, but

remember there are one million ganglion cells in the optic nerve. In some sense
the brain is doing one million things at once. This difference has motivated the
development of neural net computers, which I will discuss eventually.

Break here - - - - - -

The second giant in the field of computing and artificial intelligence was the
Englishman Alan M. Touring. In the field of computer science, he has somewhat
the same status that Einstein has in physics. He is the towering giant of the 20th
century.

During World War II Touring was instrumental in cracking the extraordinarily
complex code that the Nazi military used for most of its communications. The
simplest code you can imagine is simply a set of rules for replacing one letter for
another. For example, every time the letter T appears replace it with Q, replace U
with B, etc. If your correspondent has a copy of the rules, he or she can easily
translate the coded message. Unfortunately, your enemy can easily reconstruct
the rules based on the frequency with which letters appear in English text. But
suppose the rules change with each successive letter. It seems that that would
make the code impossible to break. The Nazis managed to write such a code with
the help of a mechanical apparatus called the enigma machine. This was an
electro-mechanical rotor device that would change the code automatically. The
sender would encode the message with an enigma machine and the recipient
with another machine would decode it. With some of the more complicated
enigmas there were billions of billions of possible combinations. Even if you could
review a million combinations a second, it would still take millions of years to
decode any message, and the Nazis changed the machine settings every day! Part
of the British success in breaking the code exploited regularities in the German
communications. For example, they tended to end their messages with “Heil
Hitler.” There was also a weakness in the machine in that it could never code a
letter as itself.

A major part of cracking the Enigma code made use of another machine built by
Touring called the Bombe, which could sort possibilities with immense speed.
Thanks to Touring’s work, the Allies were able to decode almost all intercepted

Nazi messages throughout the war. This had its downside; it forced some
agonizing decisions. For example, the British knew that the city of Coventry was to
be bombed, but they decided not to evacuate for fear of revealing the fact that
the German messages were being decoded. Nonetheless, it could be argued that
without Touring’s genius, the Allies would have lost the war or at least it would
have continued much longer with great additional suffering on the part of the
British people.

The story does not have a happy ending. Touring was an atheist and a
homosexual and he was not discreet. Homosexual sodomy was treated as a crime
in Britain in the 1950’s. In the course of reporting a burglary in 1952, he made the
mistake of informing the police of his homosexuality. He was arrested, tried, and
convicted. As part of his sentence he was to be subjected to chemical castration.
It seemed inevitable that his security clearance would be revoked and he would
be subjected to public humiliation. In June 1954 he committed suicide by eating
an apple dipped in cyanide. He was just 42.

For our purposes, Touring is notable for two other contributions, the Touring
machine and the Touring test. The Touring machine is a sort of a mathematician’s
abstract computer. No one would every build a computer like it, but because of
its extreme simplicity it is possible to prove rigorous mathematical theorems
about what computers can and cannot do. The machine consists of an infinitely
long tape marked off in “squares” on which are written symbols like 1 and 0, and
a read head that can read, erase, and write symbols and move the tape one
square to the right or left. The read head contains a set of instructions of the
form:

If the head is in state 17 and the square contains a 1, change to state 43
and move the tape one square to the right.

If the head is in state 78 and the square contains a 0, replace it with a 1 and
move the tape one square to the left.

Nowadays we would say that the tape was the “data” and the instructions in the
read head were the “program.” Touring was able to prove that any calculation that

could be performed on any computer could be done by this simple machine. He
also noted that there are calculations that seem quite trivial to humans but which
cannot be done by any computer. This last point is worth some careful thought.
Computer operations are said to be “algorithmic,” that is to say that the computer’s
calculations are always done according to a list of instructions. When we are
performing operations in our head that are impossible for any computer we are
thinking non-algorithmically. It has been claimed (and also denied) that our minds
are ultimately not computers and that computers will never be able to think like us
because we are capable of non-algorithmic thought. Touring himself didn’t think
so; he claimed that mathematical arguments are no help in deciding if a machine
can think. He proposed instead an experimental test, which he called the imitation
game and which has come to be known as the Touring test.

Imagine that you are communicating with either a computer or another human
being through a computer terminal. You submit questions and the unknown entity
replies. Your job is to decide whether you are communicating with a person or a
computer, and of course, the computer doesn’t have to tell the truth. So for
example, if you ask the computer, “Are you a computer?” it will reply “No.” An
intelligent computer, claimed Touring, is one that can systematically fool the
human questioner. The implication is that this is the only meaningful way to define
intelligence.

So how well are we doing in building such a computer? There is a contest held every
year called the Loebner Prize. Contestants submit their computer programs, which
are questioned by a panel of twelve judges. If you can fool the majority of judges
for five minutes you win $100,000 and a gold medal. No one ever has. There’s
actually a website where you can go and interview some of the best programs from
past competitions.

http://www.loebner.net/Prizef/loebner-prize.html

The Touring machine is an example of algorithmic computing, i.e. it operates
according to a definite set of instructions. The instructions are contained in the read
heads and are put there by the people who build the computer. Another way to
look at it is that the Touring machine works by manipulating symbols, in this case

http://www.loebner.net/Prizef/loebner-prize.html

the symbols 1 and 0. All von Neumann style computers are symbol manipulators.
The symbols now are represented by 32- or 64-bit words, but they are symbols
nevertheless. In the early days of AI it was assumed that intelligence could be
reduced to symbol manipulation, and this approach has come to be called Good
Old Fashion Artificial Intelligence or GOFAI for short. This approach had some
notable successes early on. Programs were developed that could prove theorems
in logic, mathematics, and geometry, and play decent games of Backgammon,
checkers and chess. In retrospect, these tasks are most easily represented by
symbols. Other tasks, face recognition for example, proved to be much more
difficult. Other aspects of intelligence, like pattern recognition, context sensitivity,
and rough-and-ready categorization proved much more difficult. It became
increasingly clear how few human abilities actually fit the GOFIA model. Certainly
the brain in no way resembles a von Neumann computer. The brain does parallel
processing on a massive scale and it does it with neurons. So why not model a
computer like the brain? Thus was born the idea of neural nets. Connectionism and
parallel processing are more or less synonymous terms.

The header of this podcast is a very schematic diagram of simple neural net. The
circles represent neurons and lines connecting them are a combination of an axon
from the previous neuron, a synapse, and a dendrite leading into the next neuron.
Associated with each synapse is a weight. This is a small number which might be
positive or negative. (In this diagram we can simply say that the weight is associated
with the entire line.) The weights can be adjusted, and in this way the network
“learns” from experience. From the point of view of mathematics, a neuron is just
a function called the activation function. It simply adds up the incoming signals, and
depending on how large the sum is it produces some output that is fed onto the
next neuron.

Suppose we want to teach a network to recognize faces. First we digitize some
photos so that they can be fed into the net. We know the names of these people
of course, and the network has a list of possible names. We chose a sample of
photos called the training set, and feed them into the net. The net has never seen
these people before, and so its responses are just wild guesses. We now change
the weights so that it makes better guesses. Feed the training set in again, and again

adjust the weights. We might have to do this many times until the network is
completely trained. How well does this work?

Here's an example in some detail. Garrison Cottrell and his group at UC San Diego
constructed a three-layer neural net that used photos as input. The training set
consisted of 64 photos of 11 different faces with different expressions plus 13
photos of non-faces, photos of a watch or a bulletin board, for example. Once
trained, the machine achieved 100 percent accuracy on the training sample. It
could tell you which was a face, what the sex of the person was, and who it was.
The team then showed the computer many picture of the same people but with
different expressions. It was 98% accurate at identifying the name and gender of
the new photos. The team then showed the net more pictures of people it had
never seen. It was still 100% accurate in distinguishing between faces and non-
faces, and 81% accurate in determining the sex of these people it had never seen.
I think that if you showed me photos of faces of students on campus I would not
do much better myself.

There are some things about this I find fascinating. If you were to stop your desktop
computer in the midst of a calculation and peer into its CPU you could discern
exactly what it was doing. Look into its program memory and you will learn what it
is going to do. Look into its hard drive and you will see the data it is working with;
but with a neural net you never know what it is thinking about. The result of all its
knowledge and judgement is a set of apparently meaningless numbers.

This brings me around to the question I started with; is the mind nothing more than
a large computer? We know now that it is certainly not a von Neumann style
computer, but might it be just a very large neural net? It is certainly true that we
can model or instantiate various mental processes or sub-processes with artificial
neural nets. It is also true that when we think about something, various areas of
our brains “light up” in fMRI scans. To use a technical term, there are “neural
correlates” to our thoughts. But is that the whole story? People working in
computer science will often say glibly, yes of course, that is all there is. Philosophers
are not so sure. When philosophers argue the issue, it is usually with the help of
some bizarre thought experiments.

The most famous of these is called the Chinese room argument first proposed by
John Searle of UC Berkeley. Let’s assume that you don’t know any Chinese, but you
are in a room with many instruction books written in English and Chinese. Chinese
speakers pass questions into you written in their native language. You then consult
your reference books as to how you are going to answer. They say things like, “if
you see the following set of meaningless symbols, reply with this set of equally
meaningless symbols.” You pass your responses on to the Chinese speakers
outside, and they assume you are also a native speaker, but in fact, you understood
absolutely nothing you wrote. Searle’s point is that in the room you are doing
exactly what a computer does: you are taking input data and processing it
according to a set of instructions, but without any understanding of what you are
doing. The input, the output, and the instructions are all meaningless. Searle makes
the following distinction. Syntax refers to the rules for making grammatical
sentences. Semantics refers to the meaning of these sentences. Computers are
masters of syntax; they know all the rules, but they know nothing of semantics. It
would be trivially wrong to say that our minds are not computers. We can compute
after all; but our minds are not only computers. We have semantics, they don’t.

Searle makes a further point that seems to me very important. Suppose you are
typing a letter using MS Word. You are communicating with the computer by
means of electrical impulses. The computer responds by putting little black
patterns on your monitor screen. Searle’s point is that neither the electrical
impulses nor the letters on the screen by themselves have any meaning. The
meaning is intrinsic to you, not the computer. Paper money makes a good analogy.
Think of a hundred-dollar bill. It’s just a piece of paper. In and of itself it is practically
worthless. We assign it meaning and value.

There have been numerous attempts to refute this argument. Perhaps the best we
can do by way of a refutation is to say that Searle’s argument is based on our
current knowledge of computers and consciousness. Perhaps one day we will see
all this from a larger perspective. Perhaps. I would not want to discourage further
research in computers as means for understanding the mind, but there are further
philosophic considerations that I will take up in the next podcast.

